49

DUALITY AND INDETERMINACY PRINCIPLE IN STRING THEORY

Tamiaki Yoneya

Institute of Physics, University of Tokyo
Komaba, Meguro-ku, Tokyo, Japan

ABSTRACT

We give an elementary explanation about how string
theories overcome the ultraviolet difficulty of the
local field theories. The indeterminacy principle
is reinterpreted as a limitation on the smallness
of the domain of observations.

1. INTRODUCTION

One of the most attractive properties of the string theoryl as a
candidate for the fundamental unified theory of nature including
grévity is that it resolves the renowned ultraviclet difficulty which
is inherent in local quantum field theories. How the ultravioclet
problem is circumvented is seen at least mathematically by examining
the 5ingu1aritie52 of the integrand of the string-~loop amplitudes
expressed in the moduli space of Riemann surfaces with handles and/or
holes. The singularities can occur only on the boundary of the moduli
space at which a Riemamn surface with a definite topology i1s connected
with another Riemann surface with a different topology. The local
neighbourhood of a limiting Riemann surface where the topology change
oceurs is always conformally equivalent with an infinitely long
cylinder (or long belt depending on situations), which is expected to
be dominantly mapped into lomg cylindrical (or belt-like) world sheets
in spacetime. From this peint of view, the single most crucial

property for the elimination of the ultraviolet difficulty seems to be
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the conformal invariance.

Physically, however, the above explanation does not seem suffi-
ciently convincing mainly because it is not expressed in a direct
spacetime picture. Therefore it is not completely valueless to seek
after the ways for understanding how strings see the short distance
structure of spacetime and to complement the results of the string-
loop calculation with much more elementary and intuitive languages.
In this note I would like to try to do this and to make further

related remarks.

2. DUALITY AS AN INDETERMINACY PRINCIPLE

The source of the ultraviolet divergences in local field theories
can be traced back to Heisenberg's indeterminacy principle. Consider

the time-energy relation

At-AE 2 B L

This relation originally means that any observation performed to a
quantum system within a time interval At induces an uncertainty AE of
energy. More precisely, A4t is taken te be the time interval between
two seduential observations and AE 1s the fluctuation of the difference
of the energies obtaimed. In local field theories, At can be taken to
be the time interval between the interaction vertices, As At + 0,
(1} implies that quantum fluctuations with arbitrarily large energy
(and hence large spatial momenta) AE m'ﬁ(ﬁt)_l can contribute to
physical amplitudes. The divergeéaﬁ is caused by the fact that the
number of particle states increases as Atl_D where D is the spacetime
dimensions. It has been recognized through numerous unsuccessful
attempts that this ultraviolet difficulty cannot be remedied within
the framework of leocal field theory especially when the gravitational
interaction is taken account.

A basic and traditional way out of this problem was to abandone
the locality of the interactions, Sufficiently high momenta would
then be cut off. In fact, if the quantum string is viewed as a

collection of infinite number of local fields which are obtained by
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making the normal mode expansion to diageonize the mass operator, the
absence of ultraviolet divergence can partially be understood as due
to the violation of locality. For example, the general vertex which
represents the connection condition of string configurations takes the
Gaussian form with respect to the'center-of-mass' momentum variables.
A consequence of this is that the high momentum behavior of the string
amplitudes is softened to the Regge-pole behavior replacing the power-
like behavior of local field theories. Unfortunately, it is very
difficult to formulate the string théory based on such a non-local
picture. We know that the string theory can be formulated within the
framework of quantum mechanics in which causélity and unitarity is
satisfied in the same sense as in local gauge field theories.
(Remember the light-cone gauge formulation.}

Then the following question comes to mind: If the center-of-mass
momenta are ecut off owing to the non-locality as explained above,
how should the relation (1) be interpreted? Roughly, the answer is
the following. In string theory, there is an infinite tower of states
with arbitrarily large masses. Hence, energy can become arbitrarily
large without acquiring large spatial momenta. Now the intrinsic
spatial extension of the string states becomes larger as the mass
increases. Thus, in the string theory, the large energy fluctuation
actually means large fluctuation with respect to the intrinsic
spatial extension of string. Led by this observation, we propose to
reinterpret the relation (1) as an indeterminacy relation between the
interval of observations and the fluctuations with respect to the

intrinsic extension of the 'observations':

2
[interval]-[fluctuation of extension] 2 A (2)

. 1/2
where A is the universa) length parameter given by (4wa'h) / where

o' being the slope parameter. (One unit is such that-.e=l.)

Here an 'obgervation' is a synonym of 2 string interaction.

(2) implies that there is a limitation about the smallness of the
spacetime domain where arbitrary possible observation in string theory

is performed. In this sense there is no room for ultraviolet
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difficulty in string theory.*)

To make (2) more precise, we have to give a definmition of the
intrinsic extension of a string. Take for definiteness the case of
closed string in the light-cone gauge. The transverse coordinates are
represented by the normal mode expansion (Ogog2w, i=1, ..., D=2, D=26)
043, Bl e iy 3

The set of mass eigenstates coincides with the occupation number

basis of the Fock space with respect to the canonical commutation

relations
1] - 2 ij _ el =3
[an, m] nA 6n+m’06 = [an, am]
i .3 i ~]l
lo], ai] =0, alfo>=0=§1l0> (m>0), (4)

There 1s a trouble in defining the extension of a string configuration.
One of the most natural measure for the fluctuation of the intrinsic
extension might seem to be the following quantity,

ax  <(x(o) ~ x(g)> 12

(5)
(cl,dz)

where Max

indicates to take the maximum value among the choices
(01:52)

of the pair (01,.02). Unless o) = 0,, however, <(x(01) -
x(dz))2> is always divergent for arbitrary normalizable states in the
Fock space. This is due to the fact that the string-coordinate
operator xi(c) at a point ¢ has no well-defined meaning for the same
reason a8s is the case of a field operator defined at a spacetime
point in ordinary local field theories, Some sort of smearing is

necessary. Let us therefore introduce a set?J of smearing functions

#*) Similar consideration applies to any extended object provided
that the intrinsic extension can increase with energy without limit,
However, except for string, inclusion of gravity seems difficult.
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as a complete set of orthonormalized functions on the C-parameter
space.

2m

3‘ = {f G): =
2(0); nez, Odofn(c)fm(d) = snm} (6)
For example, we can use
£ {o) = A cosng
a 7 n>1,
f (o) = L sinng
- Y- n>1, %)
f (c -
)%

Then, define the fluctuation of the intrinsic extension of anormalized
string state l¢> by

[ ax <plexe)) - xie, )12 w ancyy ()

m,n)

where

xE ) - szdcf @ tx (o) ~ b
0 n Yot
Since the singularity of the product x (0 )x (G ) is logarithmic
( 1og] 2[), the quantity < Ol(x(f )—x(f N ‘0> is uniformly bounded
by a constant independent of n and m ppovzded that ]f ]< C for
arbitrary n. Hence, (8) is well defined.

We can now check the relation (2}, 1If the interval of observa-
tions is of order At, (1) implies that the states of masses of the
order ﬁ(At)—l are excited:

2

;h o
LLI . o 2 -2
3 S+ E ) > vET ()

The maxlmally extended masg 91genstate 1n this range is |y>
W)~ (a D Ved ) No> with wo 22 (46)"2, We find
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——r 2
f<o] (e - x g 1t = Yiawn? v 4o ©

R A

for the choice (7) and n=1, m=0. For other combinations of (n,m) the

extenslon does not exceed (9). This implies the 'relation (2). It seems

fairly obvious that the result does not depend on the choice of the
setf?, although we do not try to make the argument rigorous.

Since the indeterminacy relation (2) is expressed directly using
the product of a 'time~like' length and a 'space-like' lemgth, it
naturally fits in the original concept of duality, or perhaps more
appropriately in the concept of 'reciprocity'

It should also be remarked that while (2) explains the absence of
the ultraviolet problem, it inturn suggests the existence of a danger
of infrared difficulty because of a large fluctuation in the long
distance regime. The necessity of supersymmetry as a consistency

condition on string theory arises at this point.

3. TPROPERTILES OF STRING PROPAGATOR

To get a further confirmation of the relation (2), it is useful
to study the string propagator. First let us remind ourselves the
case of point particle. The point-particle propagator is in

Euclidean mettric

2
. o _ (x~y) T 2
A( = d< 2T, 2
x~y) = const, /% e {10)
0T

In (10), the Schwinger parameter T characterizes the magnitude of the
interval V(xéyjz between the interaction points.
The closed-string propagator corresponding to (10) is, in the

light-cone gauge, given by

4t T
«© —_— S
Alx (), y(@)] = const.J -—'%— eAZ 1 (l-e )\2) -242xp_ Sag+
T n=

0]
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i)
1 2 kil 2 nT
.o = Gulxgy,) + = I [(Ix|+rvl) sh2nt
cl 270 70 AZ n=1 31n12n§ Az
A
~2Re(x -y_ )] (12)
where
iy _ 1 i xlo=ino
D =gt o X
i 14 s Ji_-ing
0’ e
V=AY * o

In (12), the zero-mode part (xo-yo)2 contains all D = 26 components
while the non zero-modes contain only transverse components, As in
(10), the moduli parameter t characterizes the interval

(T n v -y0 2) between the 'center-~of-mass' coordinates of the
initial and final string configurations. When T becomes large, Scl

is approximated by
el o2, T 2 2 :
Seg = 3xlxgy) + 3 i1Eln(lxnl + v | ). (13)

As expected, (13) means that the propagator reduces in this limit to
the sum of the particle preopagators of the tachyon and massless
states whose stringy extension is of order A.

On the other hand, in the limit of small T, we find that the
contribution in the secoud term of (12) for n satisfying Zn'r/}\2 « 1
1s

=

T 2 2 2 3
m-—;‘zﬁx;vnl +;‘—Z<l«nl +ly D7+ (@0, (14)

This shows that the intrinsic extension, defined by (8), of the

dominantly propagating states is of order lzlf? as required by (2).
The conclusion drawn from this simple calculation is that (2) is

satisfied in the whole range of the moduli parameter. Although our

calculations are performed for the closed bosonic string, it is clear
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that the same conclusion follows for other cases as well.

We note that the form of the propagator (l1) and (12) is actually
valid4 for any initial and final configurations which do not lie in
the light-like hyperplanes, provided that the initial and final
configurations are already parametrized. Only change is that the
scélar products in (12) for the non-zero modes are replaced by the
full D~dimensional products. In the general case, however, the manner
how the propagator appears in the amplitude needs not be the same as
in the usual Feynman rules of local field theories., Remember the well
known prescription on the integration over the fundamental region of
the moduli space in the case of loop amplitudes, It is important to
realize that the propagator of the type (11) can be used only when the
summation over the inltial and final configurations is suitably
restricted so as to be consistent with unitarity. At present, the
only workable case is the lightw~cone formulation in which the configu-
rations are restricted to the light-like hyper planes. In principle,
however, there should exist definite prescriptions for any choice of
the slice of space-like hypersurfaces.

As an example of a more general choice of the slice, let us
consider the time-like gauge on(c)/ao = 0. Then the scalar product
X, Y, in (12) is (D-1=25) dimensional. Our conclusion about the
relation (2) is of course valid in this case as well. However, a
small puzzle arises; Since the power 24 of the infinite-product term
in (11) is smaller than 25, the pole residue is not in general
positive definite. On using the same trick as in the covariant case&.

we £ind the operator form for the propagator

Ax } T " : lyg {v 1> (15)

nee” 2.2 n "
P"HM +— (3m +m)
A ]

2

2 _h bt s a 2

M = [ (u_n-an +& G - 2277, (16)

AT n=l
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This problem is resolved by noticing that (15) is well defined only if
the string configuration is parametrized. In the light-cone gauge,
the parametrization was fixed by the requirement BP+(U)/BG =0.

In the time-like gauge, unfortunately, there is no prefered parametri-
zation. Then to preserve unitarity, we have to demand that the states
multiplied to (15) be parametrization independent. This means that
the initial and final states, [¢1> and |w2> respectively, should
satisfy

x’(o)'[p(cr)[wi> =0 (1=1,2). {17)

As a first nontrivial check of the positivity, we study the massless

pole. The residue of the massless pole is given by

Ly
res. = <¢2[{ L o
1,51

o] 1 i i _
laylIO A4 Ola_la_l ]0><0|}|¢1> . (18)
The only non zero spatial component of the zero-mode momentum can be

assumed to be the (D-1=25)-th component denoted by k. Then, using

the Fourier components Rn defined by

' . =_]_-__ ~inG
x' (0)p(o) i E R e , (19)
we find
, 2ol ()P @)t = ~Lco|r R +<0
. 3 1 1 PR s |
: A 4k
(20)
1 p-1 _ 1 1 .. .D-1 _ 1
<0 (@) 5i<0lR, <] &) = 5<0[R_; .
|
| By the condition (17), (20} leads to
24 P! i
res. = <lJ’z'izjﬂm-lo'tullO:Kfolmlulil]’l:' : (1)

It is desirable to find a general proof of positivity along this line,
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- and more ambitiously, to finda general formalism in which the

arbitrariness of the cholce of the space-like hypersurface is manifest

in analogy with, e.g., Wheeler-DeWitt's Hamiltenian approach to

quantum gravity.

4. CONCLUSION

In this note, I have tried to understand the short distance
property of the string theory from an elementary point of view.
I have suggested to reinterpret the indeterminacy principle in string
theory as a manifestation of the fact that the strimng theory contains
a mechanism for cutting off the shorter distance contributions than
the Planck length., It is my hope that these considerations, although
yet very much primitive, might help our search for hidden geometrical
foundation of the string theory.
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